Муниципальное общеобразовательное учреждение Коптевская основная общеобразовательная школа Мышкинского муниципального района Ярославской области Центр цифрового и гуманитарного профилей «Точка роста»

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Основы 3D моделирования»

возраст обучающихся: 10-12 лет

Срок реализации: 1 год

составитель: Пономарёва В.В. педагог МОУ Коптевской ООШ

д.Коптево 2023 год

Оглавление

1.	Пояснительная записка	3 стр.
2.	Организационно-педагогические условия реализации программы	5 стр
3.	Учебно-тематическое планирование	7 стр
	Содержание курса	
5.	Планируемые результаты изучения курса	9 стр
6.	Календарно-тематическое планирование	10 стр
7.	Контроль-измерительные материалы	13 стр
8.	Список информационных источников	19 стр

1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Основы 3D моделирования» составлена для организации деятельности учащихся среднего звена основной школы и ориентирована на обучающихся, проявляющих интересы и склонности в области информатики, математики, физики, моделирования, компьютерной графики. В курсе решаются задачи по созданию и редактированию 3D моделей с помощью специализированного программного обеспечения: КОМПАС-3D, 3D принтер. Освоение данного направления позволяет решить проблемы, связанные с недостаточным уровнем развития абстрактного мышления, существенным преобладанием образно-визуального восприятия над другими способами получения информации, навыками черчения.

Деятельность по моделированию способствует воспитанию активности школьников в познавательной деятельности, развитию высших психических функций (повышению внимания, развитию памяти и логического мышления), аккуратности, самостоятельности в учебном процессе.

Поддержка и развитие детского технического творчества соответствуют актуальным и перспективным потребностям личности и стратегическим национальным приоритетам Российской Федерации.

Базовой основой для проектирования региональной стратегии развития научнотехнического творчества, учебно-исследовательской деятельности обучающихся и молодежи являются нормативные и правовые акты:

- 1. Федеральный Закон «Об образовании в Российской Федерации» от 29.12.2012 № 273-ФЗ.
- 2. Концепция развития дополнительного образования детей (утверждена распоряжением Правительства РФ от 04.09.2014 № 1726-р).
- 3. СанПин к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей (утверждено постановлением Главного государственного санитарного врача РФ от 04.07.2014 № 41)
- 4. Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам» (далее Приказ № 196);
- 5. Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы) (Приложение к письму Департамента государственной политики в сфере воспитания детей и молодежи Министерства образования и науки РФ от 18.11.2015 № 09-3242).

Актуальность данной программы состоит в том, что она направлена на овладение знаниями в области компьютерной трехмерной графики конструирования и технологий на основе методов активизации творческого воображения, и тем самым способствует развитию конструкторских, изобретательских, научно-технических компетентностей и нацеливает детей на осознанный выбор необходимых обществу профессий, как инженер-конструктор, инженер-технолог, проектировщик, дизайнер и т.д.

Работа с 3D графикой — одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не, только профессиональные художники и дизайнеры.

Данные направления ориентируют подростков на рабочие специальности, воспитывают будущих инженеров – разработчиков, технарей, способных к высокопроизводительному труду, технически насыщенной производственной деятельности.

Новизна данной программы состоит в том, что занятия по 3D моделированию помогают приобрести глубокие знания в области технических наук, ценные практические

умения и навыки, воспитывают трудолюбие, дисциплинированность, культуру труда, умение работать в коллективе. Знания, полученные при изучении программы «Основы 3D-моделирования», учащиеся могут применить для подготовки мультимедийных разработок по различным предметам — математике, физике, химии, биологии и др. Трехмерное моделирование служит основой для изучения систем виртуальной реальности.

Цель:

Повышать интерес обучающихся к инженерному образованию, показав возможности современных программных средств для обработки трёхмерных изображений.

Задачи:

Обучающие:

- о создание трехмерных моделей;
- о работа с 3D принтером;
- о формирование навыков моделирования через создание виртуальных объектов в предложенной среде конструирования;
- о расширение области знаний о профессиях.

Развивающие:

- о развитие творческого мышления при создании 3D моделей.
- о развитие логического, алгоритмического и системного мышления;
- о развитие образного, технического мышления и умения выразить свой замысел;
- о развитие умения творчески подходить к решению задачи;
- о стимулирование мотивации обучающихся к получению знаний, формирование творческой личности ребенка;
- о развитие интереса к технике, конструированию, программированию, высоким технологиям;
- о развитие воображения;

Воспитательные:

- о выявление заинтересованных обучающихся, проявивших интерес к знаниям по освоению 3D моделирования;
- о воспитание умственных и волевых усилий, концентрации внимания.

Общая характеристика

Основным содержанием данного курса является формирование умений по созданию и редактированию трехмерных моделей, изучение особенностей и приемов манипулирования виртуальными объектами в различных программных средах, с постепенным усложнением интерфейса самих приложений и заданий, выполняемых в них. Итоги тем подводятся по результатам разработки обучающимися творческих мини-проектов 3D моделей с последующим обсуждением и защитой этих проектов.

2. Организационно-педагогические условия реализации программы.

Адресат программы, категория обучающихся.

Дополнительная общеобразовательная программа «Основы 3D моделирования» рассчитана для общеобразовательных школ. Возраст обучающихся 10-12 лет.

Данная программа «Основы 3D моделирования» имеет техническую направленность.

Объем программы 34 учебных часа.

Формы обучения и виды занятий.

Формы организации учебных занятий:

- самостоятельная работа;
- работа в парах, в группах;
- практическая работы;
- индивидуальная и групповая исследовательская работа;

Формы контроля:

- визуальные;

Методы обучения:

- Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов).
- Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей).
- Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.).
- Контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий). Групповая работа.

Срок освоения программы

Программа рассчитана на 1 год обучения. На реализацию курса отводится 1 час в неделю, 34 часа в год.

Режим занятий.

Занятия проводятся 1 раз в неделю. Продолжительность занятия - 45 минут.

Метолическое обеспечение

Техническое образование –одна из форм создания интеллектуального потенциала, непрерывности и развития. Основными мотивами занятий является подготовка к профессиональной деятельности.

Опорными элементами технологии проведения занятий является:

- о постановка задачи;
- о мотивация творческой деятельности;
- о объяснение нового материала;
- о практическая деятельность обучающихся под контролем педагога;

- о самостоятельная работа обучающихся по новому материалу;
- о подготовка детей к презентации своих работ.

Для организации занятий требуется учебный кабинет и определенное оснащение образовательного процесса.

Методы организации образовательного процесса: программа предусматривает применение педагогических методов и приемов, что позволяет сделать обучение эффективным и целенаправленным.

- Словесный метод применяется при объяснении теоретического материала по темам.
- Наглядный метод применяется как при объяснении теоретического материала, так и для демонстрации результатов работы учащихся.
- Практическая работа необходима при отработке навыков и умений.

Форма организации образовательного процесса: групповая и индивидуальная

Формы организации учебного занятия: теоретическое и практическое занятие

Педагогические технологии, используемые в обучении:

- Личностно-ориентированные технологии позволяют найти индивидуальный подход к каждому ребенку, создать для него необходимые условия комфорта и успеха в обучении. Они предусматривают выбор темы, объем материала с учетом сил, способностей и интересов ребенка, создают ситуацию сотрудничества для общения с другими членами коллектива.
- Технология творческой деятельности используется для повышения творческой активности детей.
- Технология проектной деятельности позволяет развивать у детей наблюдательность, логику, большую самостоятельность в выборе целей и постановке задач, проведении опытов и наблюдений, анализе и обработке полученных результатов. В результате происходит активное овладение знаниями, умениями и навыками.

Материально-техническое обеспечение программы

Оборудование:

столы, стулья, школьная доска, персональные компьютеры, экран, проектор, МФУ, 3D принтер, 3D ручки, инструменты.

Инструменты:

- 1. Тетрадь в клетку;
- 2. Картон;
- 3. Клей ПВА, клей-карандаш;
- 4. Штангенциркуль;
- Линейка 30 см.;
- 6. Чертежные угольники с углами: а) 90, 45, 45 -градусов; б) 90, 30, 60 градусов.
- 7. Простые карандаши «Т» («Н»), «ТМ» («НВ»), «М» («В»);
- 8. Ластик для карандаша (мягкий);
- 9. Инструмент для заточки карандаша.
- 10. Персональный компьютер педагога.
- 11. Мультимедийное оборудование.

3. Учебно-тематическое планирование.

Тема		Количество часов		
		всего	теория	практика
Введение в 3D-моделирование		1	1	-
Черчение 2D-моделей в КОМПАС-3D		6	1	5
Построение 3D-моделей в КОМПАС-3D		15	2	13
Знакомство с 3D-принтером		1	1	-
Освоение программ		2	1	1
Печать 3D-моделей		6	2	4
Творческие проекты		3	1	2
	Итого:	34	9	25

4. Содержание курса

Введение в 3D моделирование (1 час)

Инструктаж по технике безопасности.

3D технологии. Понятие 3D модели и виртуальной реальности. Области применения и назначение. Примеры.

Черчение 2D-моделей в КОМПАС-3D (6 часов)

Пользовательский интерфейс. Виды линий. Изменение параметров (редактирование по дереву). Правила введения параметров через клавиатуру. Нанесение размеров. Построение собственных моделей по эскизам.

Построение 3D-моделей в КОМПАС-3D (15 часов)

Способы задания плоскости в КОМПАСе. Операция выдавливания. Создание эскизов для моделирования 3D. Способы построения группы тел. Установка тел друг на друга, операция приклеивания. Элементы дизайна.

Знакомство с 3D-принтером Leapfrog (1 час)

Основные элементы принтера. Техническое обслуживание.

Освоение программ по работе с 3D принтером(2 часа)

Знакомство с интерфейсом. Калибровка деталей на рабочем столе. Редактирование кода слайсера. Ручное и автоматическое управление принтером.

Печать 3D моделей (6 часов)

Технологии 3D печати. Экструзия.

Творческие проекты (3 часа)

Выполнение творческих заданий и мини-проектов по созданию 3D моделей в изученных редакторах и конструкторах.

5. Планируемые результаты освоения программы

Результаты обучения

учащиеся будут:

- о знать способы конструирования, программирования;
- о уметь использовать терминологию моделирования;
- о уметь создавать трехмерные модели;
- о уметь создавать новые примитивные модели из имеющихся заготовок;
- уметь самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи;
- о уметь строить логические рассуждения;
- о уметь создавать, применять и преобразовывать графические объекты для решения учебных и творческих задач;
- о уметь находить и выделять необходимую информацию;

Результаты воспитания

учащиеся будут:

- о проявлять интерес к знаниям по освоению 3D моделирования;
- о воспитывать умственные и волевые усилия, концентрацию внимания, логичность и развитого воображения;
- о воспитывать этические чувства, прежде всего доброжелательность и эмоциональнонравственная отзывчивость;

Результаты развития

учащиеся будут:

- о развивать мотивы и интересы своей познавательной деятельности;
- о развивать логическое, алгоритмическое и системное мышление;
- о развивать образное, техническое мышление и умение выразить свой замысел;
- о развивать умения творчески подходить к решению задачи;
- о стимулировать мотивацию обучающихся к получению знаний, помогать формировать творческую личность ребенка;
- о развивать навыки сотрудничества в разных ситуациях, умение не создавать конфликты и находить выходы из спорных ситуаций;
- о способствовать развитию интереса к технике, моделированию.

6. Календарно-тематическое планирование внеурочной деятельности по курсу «Основы 3D моделирования»

№	Тема занятия	Вид деятельности	Колич ество часов	Дата
1	Введение в 3D моделирование (1 час)			
1.	Инструктаж по технике безопасности. 3D технологии. Понятие 3D модели и виртуальной реальности.	Знакомство с правилами поведения и техники безопасности. Усвоение терминологии 3D моделирования	1	17.10.23
	Черчение 2D-моделей в КОМПАС-3D (6 часов)			
2.	Пользовательский интерфейс.	Изучение основных функций в разделе «Геометрия».	1	18.10.23
3.	Виды линий.	Функция «Линии», «Биссектриса».	1	24.10.23
4.	Изменение параметров.	Редактирование деталей из дерева событий. Блокировка/разблокиро вка событий.	1	25.10.23
5.	Нанесение размеров.	Изучение способов нанесения размеров.	1	07.11.23
6.	Построение собственных моделей по эскизам.	Групповая работа по черчению моделей по эскизам.	1	08.11.23
7.	Построение собственных моделей по эскизам.	Самостоятельная работа по черчению моделей по эскизам.	1	14.11.23
	Построение 3D-моделей в КОМПАС-3D (15 часов)			
8.	Способы задания плоскости в КОМПАСе.	Учимся правильно определять плоскость в пространстве для дальнейшего построения детали.	1	15.11.23
9.	Операция выдавливания.	Изучение функции. Установка параметров вручную и автоматически.	1	21.11.23
10.	Создание эскизов для моделирования 3D.	Создание эскизов во время работы в режиме «Деталь».	1	22.11.23
11.	Операция скругления.	Изучение функции.	1	28.11.23

		Установка параметров вручную и автоматически.		
12.	Построение уклона части детали.	Изучение функции. Установка параметров вручную и автоматически.	1	29.11.23
13.	Функция оболочка.	Изучение функции. Установка параметров вручную и автоматически.	1	05.12.23
14.	Операция Булева.	Изучение функции. Установка параметров вручную и автоматически.	1	12.12.23
15.	Вычитание компонентов.	Изучение функции. Установка параметров вручную и автоматически.	1	19.12.23
16.	Алгоритм создания 3D моделей.	Определение правильной последовательности при создании модели.	1	26.12.23
17.	Создание куба, призмы.	Изучение функции. Установка параметров вручную и автоматически.	1	09.01.24
18.	Создание пирамиды.	Изучение функции. Установка параметров вручную и автоматически.	1	16.01.24
19.	Создание сферы и шара.	Изучение функции. Установка параметров вручную и автоматически.	1	23.01.24
20.	Создание усеченных многогранников.	Изучение функции. Установка параметров вручную и автоматически.	1	30.01.24
21.	Способы построения группы тел.	Определение отличий в построении одной детали или группы.	1	06.02.24
22.	Установка тел друг на друга, операция приклеивания.	Изучение функции. Установка параметров вручную и автоматически.	1	13.02.24
	Знакомство с 3D-принтером (1 час)			
23.	Основные элементы принтера. Техническое обслуживание.	Знакомство с принтером, техническими особенностями. Учимся	1	20.02.24

		обслуживать принтер, готовить к печати. Калибровка стола.		
	Освоение программ (2 часа)			
24.	Знакомство с интерфейсом. Калибровка деталей на рабочем столе.	Изучаем основные функции программ, отличия. Учимся правильно располагать деталь на рабочем столе.	1	27.02.24
25.	Редактирование кода слайсера. Ручное и автоматическое управление принтером.	Виды слайсеров. Учимся редактировать код слайсера вручную. Учимся вручную греть экструдеры и стол.	1	05.03.24
	Печать 3D моделей (6 часов)			
26.	Технологии 3D печати.	Знакомство с технологиями 3D печати.	1	12.03.24
27.	Экструзия.	Правка STL моделей. Печать на 3D принтере	1	19.03.24
28.	Экскурсия.	Посещение кванториума	1	02.04.24
29.	3D печать.	Печатаем собственные детали.	1	09.04.24
30.	3D печать.	Печатаем собственные детали.	1	16.04.24
31.	3D печать.	Печатаем собственные детали.	1	23.04.24
	Творческие проекты (3 часа)			
32.	Выполнение творческих заданий и минипроектов по созданию 3D моделей в изученных редакторах и конструкторах	Выбор темы проекта. Подготовительные операции.	1	30.04.24
33.	Работа над проектом	Работа над проектом.	1	07.05.24
34.	Обсуждение и защита проекта	Обсуждение и защита проекта.	1	14.05.24

7. Контрольно-измерительные (оценочные) материалы.

Мониторинг результативности освоения общеобразовательной программы «З Dмоделирование»

Мониторинг результативности включает в себя:

- 1. Предварительное выявление уровня знаний, умений, навыков обучающихся (входная диагностика);
- 2. Текущая проверка в процессе усвоения каждой изучаемой темы разделы программы, при этом диагностируется уровень освоения отдельных элементов программы.
- 3.Промежуточая по итогам результатов первого полугодия.
- 4. Итоговая проверка и учет полученных обучающимися знаний, умений, навыков проводится в конце учебного года обучения по программе.
- 5. Мониторинг развития способностей и личностных качеств.

Развитие личностных качеств. Оцениваются следующие личностные качества: терпение, самоконтроль, тип сотрудничества.

Низкий уровень: обучающийся не способен длительно заниматься однообразной деятельностью, не всегда контролирует свое поведение, не чувствует ответственности за порученное дело, не коммуникабелен.

Средний уровень: обучающийся длительно занимается однообразной деятельностью, иногда переключается на другой вид деятельности, не всегда контролирует свое поведение и поступки, коммуникабелен с определенной группой обучающихся.

Высокий уровень: обучающийся способен длительно занимается однообразной деятельностью, ответственный, дисциплинированный, коммуникабельный, умеет работать в группе, согласовывать свои действия с другими ради достижения общей цели.

Теоретические знания систематически отслеживаются по проведению бесед, викторин, познавательных игр, а также с помощью применения игровых приемов.

Срезы знаний проводятся в середине года (промежуточный) и в конце года (итоговый).

Практические умения проверяются в течение каждого занятия при самостоятельном изготовлении изделий обучающимися, предусмотренные программой.

Диагностика проводится по трёхуровневой системе: низкий, средний, высокий уровни.

Тест/ текущий контроль

Часть А

- **1.** С помощью каких двух технологий в системе КОМПАС-3D можно построить трехмерную модель?
 - а. твердотельное и поверхностное моделирование
 - b. каркасное и полутоновое моделирование
 - с. поверхностное и трехмерное
 - d. объемное и плоское

Ответ: а

- 2. Когда принято говорить о гибридном моделировании?
 - а. когда твердая модели искажается
 - b. когда поверхностная модель превращается в твердотельную приданием толщины

- с. когда твердотельная модель становится каркасной
- d. когда поверхность получена при помощи операции вращения

Ответ: b

- **3.** Как называется панель, которая служит для управления процессом выполнения команды (на ней расположены одна или несколько вкладок и Панель специального управления)?
 - а. Компактная панель
 - Контекстная панель
 - с. Стандартная панель
 - d. Панель свойств

Ответ: d

- **4.** Какое название имеет панель, которая отображается на экране при выделении объектов документа и содержит кнопки вызова наиболее часто используемых команд редактирования?
 - а. Стандартная панель
 - b. панель Текущее состояние
 - с. Контекстная панель
 - d. Инструментальная панель

Ответ: с

- **5.** Как называется плоская фигура, в результате перемещения которой образуется объемное тело или поверхность?
 - а. чертеж
 - b. эскиз
 - с. плоскость
 - d. элемент

Ответ: b

- **6.** Каким будет результат выполнения кинематической операции для построения объемных элементов и поверхностей в системе КОМПАС-3D?
 - а. Перемещение эскиза вдоль направляющей
 - b. Выдавливание эскиза перпендикулярно его плоскости
 - с. Построение оболочки существующей детали
 - d. Отсечение части поверхности плоскостью

Ответ: а

- **7.** Какая операция используется для построения объемного элемента или плоскости по нескольким эскизам?
 - а. Булева операция
 - b. отсечение части поверхности плоскостью
 - с. Операция по сечениям
 - d. Операция выдавливания

Ответ: с

- 8. Какой тип документа нужно выбрать для создания новой детали?
 - а. Чертеж
 - b. Фрагмент
 - с. Деталь
 - d. Сборка

Ответ: с

- 9. Какое расширение имеют чертежи, созданные в системе КОМПАС-3D?
 - a. .cdw
 - b. .m3d
 - c. .frw
 - d. .spw

Ответ: а

- 10. Как называется графическое представление набора объектов, составляющих модель.
 - а. эскизы
 - b. дерево модели
 - с. чертежи
 - d. библиотеки

Ответ: b

- **11.** Как называются дополнительные внешние модули подключаемые к системе по мере необходимости и обеспечивающие решение прикладных задач расчет и построение механических передач, анимация механизмов, построение трубопроводов, проектирование металлоконструкций и т.д.?
 - а. документы
 - b. спецификации
 - с. библиотеки
 - d. вспомогательные проекции

Ответ: с

- 12. Что называется гранью трехмерной твердотельной модели?
 - а. отдельный участок поверхности изделия
 - b. вспомогательная плоскость
 - с. поверхность модели
 - d. гладкая (необязательно плоская) часть поверхности детали

Ответ: d

- 13. Как называется точка на конце ребра трехмерной поверхностной модели?
 - а. вершина
 - b. привязка
 - с. конечная точка
 - d. маркер редактирования

Ответ: а

- **14.** Какую вкладку нужно выбрать для определения материала, из которого изготовлена деталь?
 - а. Сервис/ Параметры МЦХ
 - b. Материалы
 - с. Инструменты/ Геометрия
 - d. Вид

Ответ: а

- 15. Как называется перемещение плоских фигур в пространстве?
 - а. движение
 - b. перемещение

- с. сдвиг
- d. операция

Ответ: d

Часть Б

- **16.** Какие из операций для построения объемных элементов и поверхностей являются базовыми?
 - а. Операция Выдавливания и вращения
 - b. Поворот и перемещение
 - с. Кинематическая операция
 - d. Операция по сечениям

Ответ: a,c,d

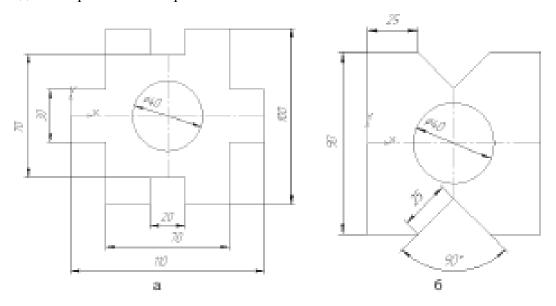
- 17. Какие существуют методы проектирования сборок?
 - а. «сверху вниз»
 - b. «справа налево»
 - с. «снизу вверх»
 - d. «слева направо»

Ответ: а,с

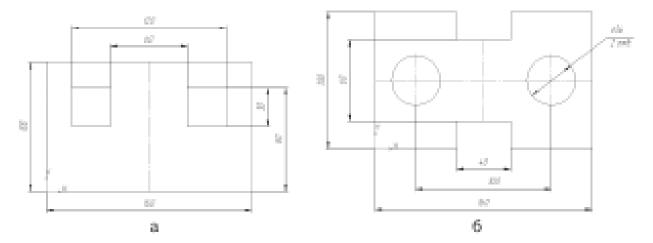
- **18.** Что образуют в трехмерной поверхностной модели отдельные поверхности разных типов?
 - а. ребра
 - b. грани
 - с. вершины
 - d. плоскости

Ответ: a,b,c

- 19. Что включают в себя трехмерные сборки?
 - а. подсборки
 - b. детали
 - с. эскизы
 - d. стандартные изделия

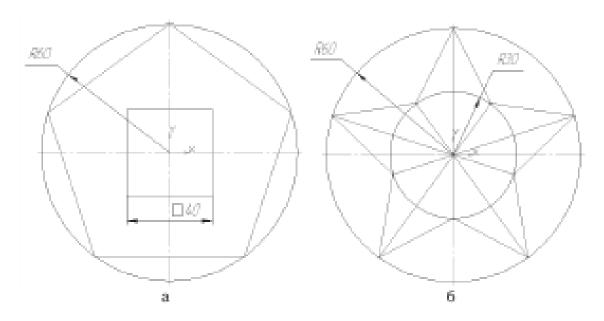

Ответ: a,b,d

- 20. Какие из объектов являются объектами вспомогательной геометрии?
 - а. системы координат, координатные и вспомогательные плоскости
 - b. координатные и вспомогательные оси
 - с. контрольные и присоединительные точки
 - d. отрезки


Ответ: a,b,c

Промежуточная аттестация

1. Откройте документ Фрагмент и постройте чертеж плоской детали простейшими командами с применением привязок.



- С какой целью на чертеже используют привязки к точкам или объектам?
- Какие два вида привязок вы знаете? Назовите отличительную особенность каждой из привязок.
 - Как построить отрезок заданной длины?
 - Как можно точно установить курсор мыши на середине отрезка?
- 2. Откройте документ Фрагмент и постройте чертеж плоской детали.

- С какой целью вызывается панель расширенных команд?
- Какие кнопки имеют панель расширенных команд?
- Каким образом раскрывается панель расширенных команд?
- Где расположена кнопка прямоугольник по центру и вершине?
- Где расположена кнопка параллельная прямая?
- Как создаются параллельные прямые и фиксируются фантомы?
- Как очистить Фрагмент от ставших ненужными вспомогательных построений?

- 3. Постройте вертикальный отрезок длиной 125 мм и разделите его на 11 равных частей.
- 4. Постройте прямоугольник высотой 90 мм и шириной 130 мм. Разделите вертикальные стороны на 5 равных частей. Выберите команду отрезок. Изменяя стиль линий, постройте отрезки стилем: осевая, штриховая, утолщенная, пунктир 2.
- 5. Постройте окружность радиусом 60 мм и разделите ее на 9 равных частей. Начало деления верхняя точка пересечения окружности и вертикальной оси симметрии.
 - 6. Постройте чертеж плоской детали:

- 7. Создайте трехмерную модель параллелепипеда (призма, все грани которой прямоугольники) высота 30 мм, длина 70 мм, выдавить на 40 мм;
- 8. Создайте трехмерную модель Четырехугольной усеченной пирамиды (пирамида, у которой два подобных основания) радиус описанной окружности 25 мм, высота 50 мм Уклон 1 внутрь, Угол 1 равен 20°.
- 9. Создайте трехмерную модель пятиугольной призмы радиус описанной окружности 30 мм, высота 70 мм.
 - 10. Постройте полный конус вращением высота 50 мм, радиус 15 мм.
- 11. Постройте усеченный конус вращением высота 40 мм, радиус нижнего основания 20 мм, радиус верхнего основания 10 мм.
- 12. Постройте полный конус выдавливанием радиус 30 мм, выдавить на расстояние 60 мм, Уклон 1 внугрь, Угол 1 равен 26.5° .
- 13. Постройте цилиндр выдавливанием радиус 20 мм, выдавить на расстояние 45 мм, Угол 1 равен 0° .

8. Список информационных источников

Литература для педагогов:

http://www.ascon.ru. Сайт фирмы АСКОН.

Http://edu.ascon.ru/ Методические материалы размешены на сайге «КОМПАС в образовании» 3dtoday.ru - энциклопедия 3D печати

Литература для обучающихся:

http:// edu.ascon.ru/ Методические материалы размешены на сайте «КОМПАС в образовании» http://www.ascon.ru. Сайт фирмы АСКОН.

Интернет- ресурсы:

- 1. https://make-3d.ru/articles/chto-takoe-3d-ruchka/
- 2. http://3dtoday.ru/wiki/3d_pens/
- 3. https://mysku.ru/blog/china-stores/30856.html
- 4. https://geektimes.ru/company/top3dshop/blog/284340/
- 5. https://habrahabr.ru/company/masterkit/blog/257271/

https://www.losprinters.ru/articles/trafarety-dlya-3d-ruchek